The Stacks project

63.27 Fundamental groups

This material is discussed in more detail in the chapter on fundamental groups. See Fundamental Groups, Section 58.1. Let $X$ be a connected scheme and let $\overline{x}\to X$ be a geometric point. Consider the functor

\[ \begin{matrix} F_{\overline{x}}: & \text{ finite étale } \atop \text{ schemes over } X & \longrightarrow & \text{ finite sets} \\ & Y/X & \longmapsto & F_{\overline{x}}(Y) = \left\{ \text{ geom points }\overline y \atop \text{ of } Y \text{ lying over }\overline{x}\right\} = Y_{\overline{x}} \end{matrix} \]


\[ \pi _1(X, \overline{x}) = Aut(F_{\overline{x}}) = \text{ set of automorphisms of the functor }F_{\overline{x}} \]

Note that for every finite étale $Y \to X$ there is an action

\[ \pi _1(X, \overline{x}) \times F_{\overline{x}}(Y) \to F_{\overline{x}}(Y) \]

Definition 63.27.1. A subgroup of the form $\text{Stab}(\overline y\in F_{\overline{x}}(Y))\subset \pi _1(X, \overline{x})$ is called open.

Theorem 63.27.2 (Grothendieck). Let $X$ be a connected scheme.

  1. There is a topology on $\pi _1(X, \overline{x})$ such that the open subgroups form a fundamental system of open nbhds of $e\in \pi _1(X, \overline x)$.

  2. With topology of (1) the group $\pi _1(X, \overline{x})$ is a profinite group.

  3. The functor

    \[ \begin{matrix} \text{ schemes finite } \atop \text{ étale over }X & \to & \text{ finite discrete continuous } \atop \pi _1(X, \overline{x})\text{-sets} \\ Y / X & \mapsto & F_{\overline{x}}(Y) \text{ with its natural action} \end{matrix} \]

    is an equivalence of categories.

Proof. See [SGA1]. $\square$

Proposition 63.27.3. Let $X$ be an integral normal Noetherian scheme. Let $\overline y\to X$ be an algebraic geometric point lying over the generic point $\eta \in X$. Then

\[ \pi _ x(X, \overline\eta ) = Gal(M/\kappa (\eta )) \]

($\kappa (\eta )$, function field of $X$) where

\[ \kappa (\overline\eta )\supset M\supset \kappa (\eta ) = k(X) \]

is the max sub-extension such that for every finite sub extension $M\supset L\supset \kappa (\eta )$ the normalization of $X$ in $L$ is finite étale over $X$.

Proof. Omitted. $\square$

Change of base point. For any $\overline{x}_1, \overline{x}_2$ geom. points of $X$ there exists an isom. of fibre functions

\[ \mathcal{F}_{\overline{x}_1} \cong \mathcal{F}_{\overline{x}_2} \]

(This is a path from $\overline{x}_1$ to $\overline{x}_2$.) Conjugation by this path gives isom

\[ \pi _1(X, \overline{x}_1) \cong \pi _1(X, \overline{x}_2) \]

well defined up to inner actions.

Functoriality. For any morphism $X_1\to X_2$ of connected schemes any $\overline{x}\in X_1$ there is a canonical map

\[ \pi _1(X_1, \overline{x}) \to \pi _1(X_2, \overline{x}) \]

(Why? because the fibre functor ...)

Base field. Let $X$ be a variety over a field $k$. Then we get

\[ \pi _1(X, \overline{x}) \to \pi _1(Spec(k), \overline{x}) =^{\text{prop}} Gal(k^{\text{sep}}/k) \]

This map is surjective if and only if $X$ is geometrically connected over $k$. So in the geometrically connected case we get s.e.s. of profinite groups

\[ 1 \to \pi _1(X_{\overline{k}}, \overline{x}) \to \pi _1(X, \overline{x}) \to Gal(k^{\text{sep}}/k) \to 1 \]

($\pi _1(X_{\overline{k}}, \overline{x})$: geometric fundamental group of $X$, $\pi _1(X, \overline{x})$: arithmetic fundamental group of $X$)

Comparison. If $X$ is a variety over $\mathbf{C}$ then

\[ \pi _1(X, \overline{x}) = \text{ profinite completion of } \pi _1(X(\mathbf{C})(\text{ usual topology}), x) \]

(have $x\in X(\mathbf{C})$)

Frobenii. $X$ variety over $k$, $\# k < \infty $. For any $x \in X$ closed point, let

\[ F_ x\in \pi _1(x, \overline{x}) = \text{Gal}(\kappa (x)^{\text{sep}}/\kappa (x)) \]

be the geometric frobenius. Let $\overline\eta $ be an alg. geom. gen. pt. Then

\[ \pi _1(X, \overline\eta ) \leftarrow ^{\cong } \pi _1(X, \overline{x}) {\text{functoriality} \atop \leftarrow } \pi _1(x, \overline{x}) \]

Easy fact:

\[ \begin{matrix} \pi _1(X, \overline\eta ) & \to ^{\deg } \pi _1(\mathop{\mathrm{Spec}}(k), \overline\eta ) * & = Gal(k^{sep}/k) \\ & & || \\ & & \widehat{\mathbf{Z}}\cdot F_{\mathop{\mathrm{Spec}}(k)} \\ F_ x & \mapsto & \deg (x)\cdot F_{\mathop{\mathrm{Spec}}(k)} \end{matrix} \]

Recall: $\deg (x) = [\kappa (x):k]$

Fundamental groups and lisse sheaves. Let $X$ be a connected scheme, $\overline{x}$ geom. pt. There are equivalences of categories

\[ \begin{matrix} (\Lambda \text{ finite ring}) & \text{fin. loc. const. sheaves of } \atop \Lambda \text{-modules of }X_{\acute{e}tale} & \leftrightarrow & \text{ finite (discrete) }\Lambda \text{-modules} \atop \text{ with continuous }\pi _1(X, \overline{x})\text{-action} \\ (\ell \text{ a prime}) & \text{ lisse }\ell \text{-adic} \atop \text{ sheaves} & \leftrightarrow & \text{finitely generated }\mathbf{Z}_\ell \text{-modules }M\text{ with continuous} \atop \pi _1(X, \overline{x})\text{-action where we use } \ell \text{-adic topology on }M \end{matrix} \]

In particular lisse $\mathbf{Q}_ l$-sheaves correspond to continuous homomorphisms

\[ \pi _1(X, \overline{x}) \to \text{GL}_ r(\mathbf{Q}_ l), \quad r\geq 0 \]

Notation: A module with action $(M, \rho )$ corresponds to the sheaf $\mathcal{F}_\rho $.

Trace formulas. $X$ variety over $k$, $\# k < \infty $.

  1. $\Lambda $ finite ring $(\# \Lambda , \# k)=1$

    \[ \rho : \pi _1(X, \overline{x})\to \text{GL}_ r(\Lambda ) \]

    continuous. For every $n\geq 1$ we have

    \[ \sum _{d|n}d\left( \sum _{x\in |X|, \atop \deg (x)=d} \text{Tr}(\rho (F_ x^{n/d}))\right) = \text{Tr}\left( (\pi _ x^ n)^* |_{R\Gamma _ c(X_{\overline{k}}, \mathcal{F}_\rho )}\right) \]
  2. $l\neq char(k)$ prime, $\rho : \pi _1(X, \overline{x})\to \text{GL}_ r(\mathbf{Q}_ l)$. For any $n\geq 1$

    \[ \sum _{d|n} d\left( \sum _{x\in |X| \atop \deg (x)=d} \text{Tr} \left( \rho (F_ x^{n/d}) \right) \right) = \sum _{i = 0}^{2\dim X} (-1)^ i \text{Tr}\left( \pi _ X^* |_{H_ c^ i(X_{\overline{k}}, \mathcal{F}_\rho )}\right) \]

Weil conjectures. (Deligne-Weil I, 1974) $X$ smooth proj. over $k$, $\# k = q$, then the eigenvalues of $\pi _ X^*$ on $H^ i(X_{\overline{k}}, \mathbf{Q}_ l)$ are algebraic integers $\alpha $ with $|\alpha |=q^{1/2}$.

Deligne's conjectures. (almost completely proved by Lafforgue + $\ldots $) Let $X$ be a normal variety over $k$ finite

\[ \rho : \pi _1(X, \overline{x}) \longrightarrow \text{GL}_ r(\mathbf{Q}_ l) \]

continuous. Assume: $\rho $ irreducible $\det (\rho )$ of finite order. Then

  1. there exists a number field $E$ such that for all $x\in |X|$(closed points) the char. poly of $\rho (F_ x)$ has coefficients in $E$.

  2. for any $x\in |X|$ the eigenvalues $\alpha _{x, i}$, $i = 1, \ldots , r$ of $\rho (F_ x)$ have complex absolute value $1$. (these are algebraic numbers not necessary integers)

  3. for every finite place $\lambda $( not dividing $p$), of $E$ (maybe after enlarging $E$ a bit) there exists

    \[ \rho \lambda : \pi _1(X, \overline{x}) \to \text{GL}_ r(E_\lambda ) \]

    compatible with $\rho $. (some char. polys of $F_ x$'s)

Theorem 63.27.4 (Deligne, Weil II). For a sheaf $\mathcal{F}_\rho $ with $\rho $ satisfying the conclusions of the conjecture above then the eigenvalues of $\pi _ X^*$ on $H_ c^ i(X_{\overline{k}}, \mathcal{F}_{\rho })$ are algebraic numbers $\alpha $ with absolute values

\[ |\alpha |=q^{w/2}, \text{ for }w\in \mathbf{Z},\ w\leq i \]

Moreover, if $X$ smooth and proj. then $w = i$.

Proof. See [WeilII]. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03VD. Beware of the difference between the letter 'O' and the digit '0'.