Proposition 63.27.3. Let $X$ be an integral normal Noetherian scheme. Let $\overline y\to X$ be an algebraic geometric point lying over the generic point $\eta \in X$. Then

($\kappa (\eta )$, function field of $X$) where

is the max sub-extension such that for every finite sub extension $M\supset L\supset \kappa (\eta )$ the normalization of $X$ in $L$ is finite étale over $X$.

## Comments (0)