The Stacks project

Definition 18.32.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.

  1. A finite locally free $\mathcal{O}$-module $\mathcal{F}$ is said to have rank $r$ if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} $ of $U$ such that $\mathcal{F}|_{U_ i}$ is isomorphic to $\mathcal{O}_{U_ i}^{\oplus r}$ as an $\mathcal{O}_{U_ i}$-module.

  2. An $\mathcal{O}$-module $\mathcal{L}$ is invertible if the functor

    \[ \textit{Mod}(\mathcal{O}) \longrightarrow \textit{Mod}(\mathcal{O}),\quad \mathcal{F} \longmapsto \mathcal{F} \otimes _\mathcal {O} \mathcal{L} \]

    is an equivalence.

  3. The sheaf $\mathcal{O}^*$ is the subsheaf of $\mathcal{O}$ defined by the rule

    \[ U \longmapsto \mathcal{O}^*(U) = \{ f \in \mathcal{O}(U) \mid \exists g \in \mathcal{O}(U)\text{ such that }fg = 1\} \]

    It is a sheaf of abelian groups with multiplication as the group law.


Comments (0)

There are also:

  • 4 comment(s) on Section 18.32: Invertible modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0409. Beware of the difference between the letter 'O' and the digit '0'.