The Stacks project

Lemma 18.32.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{L}$ be an $\mathcal{O}$-module. The following are equivalent:

  1. $\mathcal{L}$ is invertible, and

  2. there exists an $\mathcal{O}$-module $\mathcal{N}$ such that $\mathcal{L} \otimes _\mathcal {O} \mathcal{N} \cong \mathcal{O}$.

In this case we have

  1. $\mathcal{L}$ is a flat $\mathcal{O}$-module of finite presentation,

  2. for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} $ such that $\mathcal{L}|_{U_ i}$ is a direct summand of a finite free module, and

  3. the module $\mathcal{N}$ in (2) is isomorphic to $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O})$.

Proof. Assume (1). Then the functor $- \otimes _\mathcal {O} \mathcal{L}$ is essentially surjective, hence there exists an $\mathcal{O}$-module $\mathcal{N}$ as in (2). If (2) holds, then the functor $- \otimes _\mathcal {O} \mathcal{N}$ is a quasi-inverse to the functor $- \otimes _\mathcal {O} \mathcal{L}$ and we see that (1) holds.

Assume (1) and (2) hold. Since $- \otimes _\mathcal {O} \mathcal{L}$ is an equivalence, it is exact, and hence $\mathcal{L}$ is flat. Denote $\psi : \mathcal{L} \otimes _\mathcal {O} \mathcal{N} \to \mathcal{O}$ the given isomorphism. Let $U$ be an object of $\mathcal{C}$. We will show that the restriction $\mathcal{L}$ to the members of a covering of $U$ is a direct summand of a free module, which will certainly imply that $\mathcal{L}$ is of finite presentation. By construction of $\otimes $ we may assume (after replacing $U$ by the members of a covering) that there exists an integer $n \geq 1$ and sections $x_ i \in \mathcal{L}(U)$, $y_ i \in \mathcal{N}(U)$ such that $\psi (\sum x_ i \otimes y_ i) = 1$. Consider the isomorphisms

\[ \mathcal{L}|_ U \to \mathcal{L}|_ U \otimes _{\mathcal{O}_ U} \mathcal{L}|_ U \otimes _{\mathcal{O}_ U} \mathcal{N}|_ U \to \mathcal{L}|_ U \]

where the first arrow sends $x$ to $\sum x_ i \otimes x \otimes y_ i$ and the second arrow sends $x \otimes x' \otimes y$ to $\psi (x' \otimes y)x$. We conclude that $x \mapsto \sum \psi (x \otimes y_ i)x_ i$ is an automorphism of $\mathcal{L}|_ U$. This automorphism factors as

\[ \mathcal{L}|_ U \to \mathcal{O}_ U^{\oplus n} \to \mathcal{L}|_ U \]

where the first arrow is given by $x \mapsto (\psi (x \otimes y_1), \ldots , \psi (x \otimes y_ n))$ and the second arrow by $(a_1, \ldots , a_ n) \mapsto \sum a_ i x_ i$. In this way we conclude that $\mathcal{L}|_ U$ is a direct summand of a finite free $\mathcal{O}_ U$-module.

Assume (1) and (2) hold. Consider the evaluation map

\[ \mathcal{L} \otimes _\mathcal {O} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O}_ X) \longrightarrow \mathcal{O}_ X \]

To finish the proof of the lemma we will show this is an isomorphism. By Lemma 18.27.6 we have

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{O}, \mathcal{O}) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O} (\mathcal{N} \otimes _\mathcal {O} \mathcal{L}, \mathcal{O}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {O} (\mathcal{N}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O})) \]

The image of $1$ gives a morphism $\mathcal{N} \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O})$. Tensoring with $\mathcal{L}$ we obtain

\[ \mathcal{O} = \mathcal{L} \otimes _\mathcal {O} \mathcal{N} \longrightarrow \mathcal{L} \otimes _\mathcal {O} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O}) \]

This map is the inverse to the evaluation map; computation omitted. $\square$


Comments (2)

Comment #8242 by Fan on

typo in (b), there exists a covering of

There are also:

  • 4 comment(s) on Section 18.32: Invertible modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B8N. Beware of the difference between the letter 'O' and the digit '0'.