Lemma 18.32.3. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. The pullback $f^*\mathcal{L}$ of an invertible $\mathcal{O}_\mathcal {D}$-module is invertible.
Proof. By Lemma 18.32.2 there exists an $\mathcal{O}_\mathcal {D}$-module $\mathcal{N}$ such that $\mathcal{L} \otimes _{\mathcal{O}_\mathcal {D}} \mathcal{N} \cong \mathcal{O}_\mathcal {D}$. Pulling back we get $f^*\mathcal{L} \otimes _{\mathcal{O}_\mathcal {C}} f^*\mathcal{N} \cong \mathcal{O}_\mathcal {C}$ by Lemma 18.26.2. Thus $f^*\mathcal{L}$ is invertible by Lemma 18.32.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: