Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 18.32.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed space.

  1. If $\mathcal{L}$, $\mathcal{N}$ are invertible $\mathcal{O}$-modules, then so is $\mathcal{L} \otimes _\mathcal {O} \mathcal{N}$.

  2. If $\mathcal{L}$ is an invertible $\mathcal{O}$-module, then so is $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O})$ and the evaluation map $\mathcal{L} \otimes _\mathcal {O} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O}) \to \mathcal{O}$ is an isomorphism.

Proof. Part (1) is clear from the definition and part (2) follows from Lemma 18.32.2 and its proof. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 18.32: Invertible modules

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.