Lemma 18.32.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed space.

If $\mathcal{L}$, $\mathcal{N}$ are invertible $\mathcal{O}$-modules, then so is $\mathcal{L} \otimes _\mathcal {O} \mathcal{N}$.

If $\mathcal{L}$ is an invertible $\mathcal{O}$-module, then so is $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O})$ and the evaluation map $\mathcal{L} \otimes _\mathcal {O} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{L}, \mathcal{O}) \to \mathcal{O}$ is an isomorphism.

## Comments (0)

There are also: