Lemma 8.2.3. Let $F : \mathcal{S}_1 \to \mathcal{S}_2$ be a $1$-morphism of fibred categories over the category $\mathcal{C}$. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and $x, y\in \mathop{\mathrm{Ob}}\nolimits ((\mathcal{S}_1)_ U)$. Then $F$ defines a canonical morphism of presheaves

\[ \mathit{Mor}_{\mathcal{S}_1}(x, y) \longrightarrow \mathit{Mor}_{\mathcal{S}_2}(F(x), F(y)) \]

on $\mathcal{C}/U$.

**Proof.**
By Categories, Definition 4.33.9 the functor $F$ maps strongly cartesian morphisms to strongly cartesian morphisms. Hence if $f : V \to U$ is a morphism in $\mathcal{C}$, then there are canonical isomorphisms $\alpha _ V : f^*F(x) \to F(f^*x)$, $\beta _ V : f^*F(y) \to F(f^*y)$ such that $f^*F(x) \to F(f^*x) \to F(x)$ is the canonical morphism $f^*F(x) \to F(x)$, and similarly for $\beta _ V$. Thus we may define

\[ \xymatrix{ \mathit{Mor}_{\mathcal{S}_1}(x, y)(f : V \to U) \ar@{=}[r] & \mathop{\mathrm{Mor}}\nolimits _{\mathcal{S}_{1, V}}(f^\ast x, f^\ast y) \ar[d] \\ \mathit{Mor}_{\mathcal{S}_2}(F(x), F(y))(f : V \to U) \ar@{=}[r] & \mathop{\mathrm{Mor}}\nolimits _{\mathcal{S}_{2, V}}(f^\ast F(x), f^\ast F(y)) } \]

by $\phi \mapsto \beta _ V^{-1} \circ F(\phi ) \circ \alpha _ V$. We omit the verification that this is compatible with the restriction mappings.
$\square$

## Comments (2)

Comment #3381 by Job Rock on

Comment #3451 by Johan on

There are also: