Lemma 78.15.1. Let B \to S as in Section 78.3. Let (G, m) be a group algebraic space over B with identity e_ G and inverse i_ G. Let X be an algebraic space over B and let a : G \times _ B X \to X be an action of G on X over B. Then we get a groupoid in algebraic spaces (U, R, s, t, c, e, i) over B in the following manner:
We set U = X, and R = G \times _ B X.
We set s : R \to U equal to (g, x) \mapsto x.
We set t : R \to U equal to (g, x) \mapsto a(g, x).
We set c : R \times _{s, U, t} R \to R equal to ((g, x), (g', x')) \mapsto (m(g, g'), x').
We set e : U \to R equal to x \mapsto (e_ G(x), x).
We set i : R \to R equal to (g, x) \mapsto (i_ G(g), a(g, x)).
Comments (0)