Lemma 75.23.1. Assume $B \to S$ and $(U, R, s, t, c)$ are as in Definition 75.19.1 (1). Let $\pi : \mathcal{S}_ U \to [U/R]$ be as in Lemma 75.19.2. Let $T$ be a scheme over $S$.

1. for every object $x$ of the fibre category $[U/R]_ T$ there exists an fppf covering $\{ f_ i : T_ i \to T\} _{i \in I}$ such that $f_ i^*x \cong \pi (u_ i)$ for some $u_ i \in U(T_ i)$,

2. the composition of the isomorphisms

$\pi (u_ i \circ \text{pr}_0) = \text{pr}_0^*\pi (u_ i) \cong \text{pr}_0^*f_ i^*x \cong \text{pr}_1^*f_ j^*x \cong \text{pr}_1^*\pi (u_ j) = \pi (u_ j \circ \text{pr}_1)$

are of the form $\pi (r_{ij})$ for certain morphisms $r_{ij} : T_ i \times _ T T_ j \to R$,

3. the system $(u_ i, r_{ij})$ forms a $[U/R]$-descent datum as defined above,

4. any $[U/R]$-descent datum $(u_ i, r_{ij})$ arises in this manner,

5. if $x$ corresponds to $(u_ i, r_{ij})$ as above, and $y \in \mathop{\mathrm{Ob}}\nolimits ([U/R]_ T)$ corresponds to $(u'_ i, r'_{ij})$ then there is a canonical bijection

$\mathop{Mor}\nolimits _{[U/R]_ T}(x, y) \longleftrightarrow \left\{ \begin{matrix} \text{morphisms }(u_ i, r_{ij}) \to (u'_ i, r'_{ij}) \\ \text{of }[U/R]\text{-descent data} \end{matrix} \right\}$
6. this correspondence is compatible with refinements of fppf coverings.

Proof. Statement (1) is part of the construction of the stackyfication. Part (2) follows from Lemma 75.21.1. We omit the verification of (3). Part (4) is a translation of the fact that in a stack all descent data are effective. We omit the verifications of (5) and (6). $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).