Lemma 94.10.9. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}$, $\mathcal{Y}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism representable by algebraic spaces. Let $\mathcal{P}$, $\mathcal{P}'$ be properties as in Definition 94.10.1. Suppose that for any morphism of algebraic spaces $a : F \to G$ we have $\mathcal{P}(a) \Rightarrow \mathcal{P}'(a)$. If $f$ has property $\mathcal{P}$ then $f$ has property $\mathcal{P}'$.
Proof. Formal. $\square$
Comments (0)