Lemma 80.4.2. Let $S$ be a scheme. Let $\mathcal{P}$ be a property as in Definition 80.4.1. Let
\[ \xymatrix{ G' \times _ G F \ar[r] \ar[d]^{a'} & F \ar[d]^ a \\ G' \ar[r] & G } \]
be a fibre square of presheaves on $(\mathit{Sch}/S)_{fppf}$. If $a$ is representable by algebraic spaces and has $\mathcal{P}$ so does $a'$.
Comments (0)