Lemma 80.4.4. Let $S$ be a scheme. Let $F_ i, G_ i : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$, $i = 1, 2$. Let $a_ i : F_ i \to G_ i$, $i = 1, 2$ be representable by algebraic spaces. Let $\mathcal{P}$ be a property as in Definition 80.4.1 which is stable under composition. If $a_1$ and $a_2$ have property $\mathcal{P}$ so does $a_1 \times a_2 : F_1 \times F_2 \longrightarrow G_1 \times G_2$.
Proof. Note that the lemma makes sense by Lemma 80.3.9. Proof omitted. $\square$
Comments (0)