The Stacks project

Lemma 79.4.4. Let $S$ be a scheme. Let $F_ i, G_ i : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}$, $i = 1, 2$. Let $a_ i : F_ i \to G_ i$, $i = 1, 2$ be representable by algebraic spaces. Let $\mathcal{P}$ be a property as in Definition 79.4.1 which is stable under composition. If $a_1$ and $a_2$ have property $\mathcal{P}$ so does $a_1 \times a_2 : F_1 \times F_2 \longrightarrow G_1 \times G_2$.

Proof. Note that the lemma makes sense by Lemma 79.3.9. Proof omitted. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 046H. Beware of the difference between the letter 'O' and the digit '0'.