Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Definition 39.11.1. Let $S$ be a scheme. Let $(G, m)$ be a group scheme over $S$. Let $X$ be a scheme over $S$, and let $a : G \times _ S X \to X$ be an action of $G$ on $X$.

  1. We say $X$ is a pseudo $G$-torsor or that $X$ is formally principally homogeneous under $G$ if the induced morphism of schemes $G \times _ S X \to X \times _ S X$, $(g, x) \mapsto (a(g, x), x)$ is an isomorphism of schemes over $S$.

  2. A pseudo $G$-torsor $X$ is called trivial if there exists an $G$-equivariant isomorphism $G \to X$ over $S$ where $G$ acts on $G$ by left multiplication.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.