Lemma 10.153.9. Let $(R, \mathfrak m, \kappa )$ be a complete local ring, see Definition 10.160.1. Then $R$ is henselian.

** Complete local rings are Henselian by Newton's method **

**Proof.**
Let $f \in R[T]$ be monic. Denote $f_ n \in R/\mathfrak m^{n + 1}[T]$ the image. Denote $f'_ n$ the derivative of $f_ n$ with respect to $T$. Let $a_0 \in \kappa $ be a simple root of $f_0$. We lift this to a solution of $f$ over $R$ inductively as follows: Suppose given $a_ n \in R/\mathfrak m^{n + 1}$ such that $a_ n \bmod \mathfrak m = a_0$ and $f_ n(a_ n) = 0$. Pick any element $b \in R/\mathfrak m^{n + 2}$ such that $a_ n = b \bmod \mathfrak m^{n + 1}$. Then $f_{n + 1}(b) \in \mathfrak m^{n + 1}/\mathfrak m^{n + 2}$. Set

(Newton's method). This makes sense as $f'_{n + 1}(b) \in R/\mathfrak m^{n + 1}$ is invertible by the condition on $a_0$. Then we compute $f_{n + 1}(a_{n + 1}) = f_{n + 1}(b) - f_{n + 1}(b) = 0$ in $R/\mathfrak m^{n + 2}$. Since the system of elements $a_ n \in R/\mathfrak m^{n + 1}$ so constructed is compatible we get an element $a \in \mathop{\mathrm{lim}}\nolimits R/\mathfrak m^ n = R$ (here we use that $R$ is complete). Moreover, $f(a) = 0$ since it maps to zero in each $R/\mathfrak m^ n$. Finally $\overline{a} = a_0$ and we win. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #5780 by Rohrbach on

Comment #5786 by Johan on

There are also: