Lemma 7.35.1. Let \mathcal{C} be a site. Let p be a point of \mathcal{C} given by u : \mathcal{C} \to \textit{Sets}. Let U be an object of \mathcal{C} and let x \in u(U). The functor
v : \mathcal{C}/U \longrightarrow \textit{Sets}, \quad (\varphi : V \to U) \longmapsto \{ y \in u(V) \mid u(\varphi )(y) = x\}
defines a point q of the site \mathcal{C}/U such that the diagram
\xymatrix{ & \mathop{\mathit{Sh}}\nolimits (pt) \ar[d]^ p \ar[ld]_ q \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]^{j_ U} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) }
commutes. In other words \mathcal{F}_ p = (j_ U^{-1}\mathcal{F})_ q for any sheaf on \mathcal{C}.
Proof.
Choose S and \mathcal{S} as in Lemma 7.32.8. We may identify \mathop{\mathit{Sh}}\nolimits (pt) = \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) as in that lemma, and we may write p = f : \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) for the morphism of topoi induced by u. By Lemma 7.28.1 we get a commutative diagram of topoi
\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{S}/u(U)) \ar[r]_-{j_{u(U)}} \ar[d]_{p'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \ar[d]^ p \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]^{j_ U} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}), }
where p' is given by the functor u' : \mathcal{C}/U \to \mathcal{S}/u(U), V/U \mapsto u(V)/u(U). Consider the functor j_ x : \mathcal{S} \cong \mathcal{S}/x obtained by assigning to a set E the set E endowed with the constant map E \to u(U) with value x. Then j_ x is a fully faithful cocontinuous functor which has a continuous right adjoint v_ x : (\psi : E \to u(U)) \mapsto \psi ^{-1}(\{ x\} ). Note that j_{u(U)} \circ j_ x = \text{id}_\mathcal {S}, and v_ x \circ u' = v. These observations imply that we have the following commutative diagram of topoi
\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \ar[rd]^ a \ar[rdd]_ q \ar `r[rrr] `d[dd]^ p [rrdd] & & & \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{S}/u(U)) \ar[r]_-{j_{u(U)}} \ar[d]^{p'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \ar[d]^ p & \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]^{j_ U} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) & }
Namely:
The morphism a : \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{S}/u(U)) is the morphism of topoi associated to the cocontinuous functor j_ x, which equals the morphism associated to the continuous functor v_ x, see Lemma 7.21.1 and Section 7.22.
The composition p \circ j_{u(U)} \circ a = p since j_{u(U)} \circ j_ x = \text{id}_\mathcal {S}.
The composition p' \circ a gives a morphism of topoi. Moreover, it is the morphism of topoi associated to the continuous functor v_ x \circ u' = v. Hence v does indeed define a point q of \mathcal{C}/U which fits into the diagram above by construction.
This ends the proof of the lemma.
\square
Comments (0)