Processing math: 100%

The Stacks project

Lemma 7.35.1. Let \mathcal{C} be a site. Let p be a point of \mathcal{C} given by u : \mathcal{C} \to \textit{Sets}. Let U be an object of \mathcal{C} and let x \in u(U). The functor

v : \mathcal{C}/U \longrightarrow \textit{Sets}, \quad (\varphi : V \to U) \longmapsto \{ y \in u(V) \mid u(\varphi )(y) = x\}

defines a point q of the site \mathcal{C}/U such that the diagram

\xymatrix{ & \mathop{\mathit{Sh}}\nolimits (pt) \ar[d]^ p \ar[ld]_ q \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]^{j_ U} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) }

commutes. In other words \mathcal{F}_ p = (j_ U^{-1}\mathcal{F})_ q for any sheaf on \mathcal{C}.

Proof. Choose S and \mathcal{S} as in Lemma 7.32.8. We may identify \mathop{\mathit{Sh}}\nolimits (pt) = \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) as in that lemma, and we may write p = f : \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) for the morphism of topoi induced by u. By Lemma 7.28.1 we get a commutative diagram of topoi

\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{S}/u(U)) \ar[r]_-{j_{u(U)}} \ar[d]_{p'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \ar[d]^ p \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]^{j_ U} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}), }

where p' is given by the functor u' : \mathcal{C}/U \to \mathcal{S}/u(U), V/U \mapsto u(V)/u(U). Consider the functor j_ x : \mathcal{S} \cong \mathcal{S}/x obtained by assigning to a set E the set E endowed with the constant map E \to u(U) with value x. Then j_ x is a fully faithful cocontinuous functor which has a continuous right adjoint v_ x : (\psi : E \to u(U)) \mapsto \psi ^{-1}(\{ x\} ). Note that j_{u(U)} \circ j_ x = \text{id}_\mathcal {S}, and v_ x \circ u' = v. These observations imply that we have the following commutative diagram of topoi

\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \ar[rd]^ a \ar[rdd]_ q \ar `r[rrr] `d[dd]^ p [rrdd] & & & \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{S}/u(U)) \ar[r]_-{j_{u(U)}} \ar[d]^{p'} & \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \ar[d]^ p & \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \ar[r]^{j_ U} & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) & }

Namely:

  1. The morphism a : \mathop{\mathit{Sh}}\nolimits (\mathcal{S}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{S}/u(U)) is the morphism of topoi associated to the cocontinuous functor j_ x, which equals the morphism associated to the continuous functor v_ x, see Lemma 7.21.1 and Section 7.22.

  2. The composition p \circ j_{u(U)} \circ a = p since j_{u(U)} \circ j_ x = \text{id}_\mathcal {S}.

  3. The composition p' \circ a gives a morphism of topoi. Moreover, it is the morphism of topoi associated to the continuous functor v_ x \circ u' = v. Hence v does indeed define a point q of \mathcal{C}/U which fits into the diagram above by construction.

This ends the proof of the lemma. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.