Lemma 41.17.3. Let $f : X \to S$ be a finite unramified morphism of schemes. Let $s \in S$. There exists an étale neighbourhood $(U, u) \to (S, s)$ and a finite disjoint union decomposition
such that each $V_ j \to U$ is a closed immersion.
Lemma 41.17.3. Let $f : X \to S$ be a finite unramified morphism of schemes. Let $s \in S$. There exists an étale neighbourhood $(U, u) \to (S, s)$ and a finite disjoint union decomposition
such that each $V_ j \to U$ is a closed immersion.
Proof. Since $X \to S$ is finite the fibre over $s$ is a finite set $\{ x_1, \ldots , x_ n\} $ of points of $X$. Apply Lemma 41.17.2 to this set (a finite morphism is separated, see Morphisms, Section 29.44). The image of $W$ in $U$ is a closed subset (as $X_ U \to U$ is finite, hence proper) which does not contain $u$. After removing this from $U$ we see that $W = \emptyset $ as desired. $\square$
Comments (3)
Comment #4018 by Davide Lombardo on
Comment #4021 by Laurent Moret-Bailly on
Comment #4127 by Johan on
There are also: