Processing math: 100%

The Stacks project

Lemma 7.30.6. Let \mathcal{C} be a site. If s : \mathcal{G} \to \mathcal{F} is a morphism of sheaves on \mathcal{C} then there exists a natural commutative diagram of morphisms of topoi

\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{G} \ar[rd]_{j_\mathcal {G}} \ar[rr]_ j & & \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \ar[ld]^{j_\mathcal {F}} \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) & }

where j = j_{\mathcal{G}/\mathcal{F}} is the localization of the topos \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} at the object \mathcal{G}/\mathcal{F}. In particular we have

j^{-1}(\mathcal{H} \to \mathcal{F}) = (\mathcal{H} \times _\mathcal {F} \mathcal{G} \to \mathcal{G})

and

j_!(\mathcal{E} \xrightarrow {e} \mathcal{G}) = (\mathcal{E} \xrightarrow {s \circ e} \mathcal{F}).

Proof. The description of j^{-1} and j_! comes from the description of those functors in Lemma 7.30.1. The equality of functors j_{\mathcal{G}!} = j_{\mathcal{F}!} \circ j_! is clear from the description of these functors (as forgetful functors). By adjointness we also obtain the equalities j_\mathcal {G}^{-1} = j^{-1} \circ j_\mathcal {F}^{-1}, and j_{\mathcal{G}, *} = j_{\mathcal{F}, *} \circ j_*. \square


Comments (2)

Comment #8601 by ZL on

Typo: "" should be ""


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.