Lemma 7.30.6. Let \mathcal{C} be a site. If s : \mathcal{G} \to \mathcal{F} is a morphism of sheaves on \mathcal{C} then there exists a natural commutative diagram of morphisms of topoi
\xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{G} \ar[rd]_{j_\mathcal {G}} \ar[rr]_ j & & \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \ar[ld]^{j_\mathcal {F}} \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) & }
where j = j_{\mathcal{G}/\mathcal{F}} is the localization of the topos \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} at the object \mathcal{G}/\mathcal{F}. In particular we have
j^{-1}(\mathcal{H} \to \mathcal{F}) = (\mathcal{H} \times _\mathcal {F} \mathcal{G} \to \mathcal{G})
and
j_!(\mathcal{E} \xrightarrow {e} \mathcal{G}) = (\mathcal{E} \xrightarrow {s \circ e} \mathcal{F}).
Proof.
The description of j^{-1} and j_! comes from the description of those functors in Lemma 7.30.1. The equality of functors j_{\mathcal{G}!} = j_{\mathcal{F}!} \circ j_! is clear from the description of these functors (as forgetful functors). By adjointness we also obtain the equalities j_\mathcal {G}^{-1} = j^{-1} \circ j_\mathcal {F}^{-1}, and j_{\mathcal{G}, *} = j_{\mathcal{F}, *} \circ j_*.
\square
Comments (2)
Comment #8601 by ZL on
Comment #9169 by Stacks project on