The Stacks project

Lemma 7.30.6. Let $\mathcal{C}$ be a site. If $s : \mathcal{G} \to \mathcal{F}$ is a morphism of sheaves on $\mathcal{C}$ then there exists a natural commutative diagram of morphisms of topoi

\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{G} \ar[rd]_{j_\mathcal {G}} \ar[rr]_ j & & \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \ar[ld]^{j_\mathcal {F}} \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) & } \]

where $j = j_{\mathcal{G}/\mathcal{F}}$ is the localization of the topos $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F}$ at the object $\mathcal{G}/\mathcal{F}$. In particular we have

\[ j^{-1}(\mathcal{H} \to \mathcal{F}) = (\mathcal{H} \times _\mathcal {F} \mathcal{G} \to \mathcal{G}) \]

and

\[ j_!(\mathcal{E} \xrightarrow {e} \mathcal{F}) = (\mathcal{E} \xrightarrow {s \circ e} \mathcal{G}). \]

Proof. The description of $j^{-1}$ and $j_!$ comes from the description of those functors in Lemma 7.30.1. The equality of functors $j_{\mathcal{G}!} = j_{\mathcal{F}!} \circ j_!$ is clear from the description of these functors (as forgetful functors). By adjointness we also obtain the equalities $j_\mathcal {G}^{-1} = j^{-1} \circ j_\mathcal {F}^{-1}$, and $j_{\mathcal{G}, *} = j_{\mathcal{F}, *} \circ j_*$. $\square$


Comments (1)

Comment #8601 by ZL on

Typo: "" should be ""


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04IR. Beware of the difference between the letter 'O' and the digit '0'.