Lemma 33.7.9. Let $k$ be a field. Let $X$ be a scheme over $k$. Let $\overline{k}$ be a (possibly infinite) Galois extension of $k$. Let $V \subset X_{\overline{k}}$ be a quasi-compact open. Then
there exists a finite subextension $\overline{k}/k'/k$ and a quasi-compact open $V' \subset X_{k'}$ such that $V = (V')_{\overline{k}}$,
there exists an open subgroup $H \subset \text{Gal}(\overline{k}/k)$ such that $\sigma (V) = V$ for all $\sigma \in H$.
Comments (0)