Remark 39.7.5. Warning: The result of Lemma 39.7.4 does not mean that every irreducible component of $G/k$ is geometrically irreducible. For example the group scheme $\mu _{3, \mathbf{Q}} = \mathop{\mathrm{Spec}}(\mathbf{Q}[x]/(x^3 - 1))$ over $\mathbf{Q}$ has two irreducible components corresponding to the factorization $x^3 - 1 = (x - 1)(x^2 + x + 1)$. The first factor corresponds to the irreducible component passing through the identity, and the second irreducible component is not geometrically irreducible over $\mathop{\mathrm{Spec}}(\mathbf{Q})$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: