Lemma 40.10.4. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Assume $U = \mathop{\mathrm{Spec}}(k)$ with $k$ a field. Let $k'/k$ be a field extension, $U' = \mathop{\mathrm{Spec}}(k')$ and let $(U', R', s', t', c')$ be the restriction of $(U, R, s, t, c)$ via $U' \to U$. In the defining diagram

\[ \xymatrix{ R' \ar[d] \ar[r] \ar@/_3pc/[dd]_{t'} \ar@/^1pc/[rr]^{s'} \ar@{..>}[rd] & R \times _{s, U} U' \ar[r] \ar[d] & U' \ar[d] \\ U' \times _{U, t} R \ar[d] \ar[r] & R \ar[r]^ s \ar[d]_ t & U \\ U' \ar[r] & U } \]

all the morphisms are surjective, flat, and universally open. The dotted arrow $R' \to R$ is in addition affine.

**Proof.**
The morphism $U' \to U$ equals $\mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k)$, hence is affine, surjective and flat. The morphisms $s, t : R \to U$ and the morphism $U' \to U$ are universally open by Morphisms, Lemma 29.23.4. Since $R$ is not empty and $U$ is the spectrum of a field the morphisms $s, t : R \to U$ are surjective and flat. Then you conclude by using Morphisms, Lemmas 29.9.4, 29.9.2, 29.23.3, 29.11.8, 29.11.7, 29.25.8, and 29.25.6.
$\square$

## Comments (0)