Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 40.10.3. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Assume $U = \mathop{\mathrm{Spec}}(k)$ with $k$ a field. For any points $r, r' \in R$ there exists a field extension $k'/k$ and points $r_1, r_2 \in R \times _{s, \mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k')$ and a diagram

\[ \xymatrix{ R & R \times _{s, \mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k') \ar[l]_-{\text{pr}_0} \ar[r]^\varphi & R \times _{s, \mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k') \ar[r]^-{\text{pr}_0} & R } \]

such that $\varphi $ is an isomorphism of schemes over $\mathop{\mathrm{Spec}}(k')$, we have $\varphi (r_1) = r_2$, $\text{pr}_0(r_1) = r$, and $\text{pr}_0(r_2) = r'$.

Proof. This is a special case of Lemma 40.7.1 parts (1) and (2). $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.