Lemma 5.9.6. Let $X$ be a locally Noetherian topological space. Then $X$ is locally connected.

**Proof.**
Let $x \in X$. Let $E$ be a neighbourhood of $x$. We have to find a connected neighbourhood of $x$ contained in $E$. By assumption there exists a neighbourhood $E'$ of $x$ which is Noetherian. Then $E \cap E'$ is Noetherian, see Lemma 5.9.2. Let $E \cap E' = Y_1 \cup \ldots \cup Y_ n$ be the decomposition into irreducible components, see Lemma 5.9.2. Let $E'' = \bigcup _{x \in Y_ i} Y_ i$. This is a connected subset of $E \cap E'$ containing $x$. It contains the open $E \cap E' \setminus (\bigcup _{x \not\in Y_ i} Y_ i)$ of $E \cap E'$ and hence it is a neighbourhood of $x$ in $X$. This proves the lemma.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: