Example 5.9.5. Any nonempty, Kolmogorov Noetherian topological space has a closed point (combine Lemmas 5.12.8 and 5.12.13). Let $X = \{ 1, 2, 3, \ldots \} $. Define a topology on $X$ with opens $\emptyset $, $\{ 1, 2, \ldots , n\} $, $n \geq 1$ and $X$. Thus $X$ is a locally Noetherian topological space, without any closed points. This space cannot be the underlying topological space of a locally Noetherian scheme, see Properties, Lemma 28.5.9.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #634 by Wei Xu on
Comment #643 by Johan on
There are also: