Lemma 3.9.6. Let $f : X \to S$, $g : Y \to S$ be morphisms of schemes. Then we have $\text{size}(X \times _ S Y) \leq \max \{ \text{size}(X), \text{size}(Y)\} $.
Proof. Let $S = \bigcup _{k \in K} S_ k$ be an affine open covering. Let $X = \bigcup _{i \in I} U_ i$, $Y = \bigcup _{j \in J} V_ j$ be affine open coverings with $I$, $J$ of cardinality $\leq \text{size}(X), \text{size}(Y)$. For each $i \in I$ there exists a finite set $K_ i$ of $k \in K$ such that $f(U_ i) \subset \bigcup _{k \in K_ i} S_ k$. For each $j \in J$ there exists a finite set $K_ j$ of $k \in K$ such that $g(V_ j) \subset \bigcup _{k \in K_ j} S_ k$. Hence $f(X), g(Y)$ are contained in $S' = \bigcup _{k \in K'} S_ k$ with $K' = \bigcup _{i \in I} K_ i \cup \bigcup _{j \in J} K_ j$. Note that the cardinality of $K'$ is at most $\max \{ \aleph _0, |I|, |J|\} $. Applying Lemma 3.9.5 we see that it suffices to prove that $\text{size}(f^{-1}(S_ k) \times _{S_ k} g^{-1}(S_ k)) \leq \max \{ \text{size}(X), \text{size}(Y))\} $ for $k \in K'$. In other words, we may assume that $S$ is affine.
Assume $S$ affine. Let $X = \bigcup _{i \in I} U_ i$, $Y = \bigcup _{j \in J} V_ j$ be affine open coverings with $I$, $J$ of cardinality $\leq \text{size}(X), \text{size}(Y)$. Again by Lemma 3.9.5 it suffices to prove the lemma for the products $U_ i \times _ S V_ j$. By Lemma 3.9.4 we see that it suffices to show that
We omit the proof of this inequality. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: