Lemma 7.26.4. Let \mathcal{C} be a site. Let \{ U_ i \to U\} _{i \in I} be a covering of \mathcal{C}. Given any glueing data (\mathcal{F}_ i, \varphi _{ij}) for sheaves of sets with respect to the covering \{ U_ i \to U\} _{i \in I} there exists a sheaf of sets \mathcal{F} on \mathcal{C}/U together with isomorphisms
\varphi _ i : \mathcal{F}|_{\mathcal{C}/U_ i} \to \mathcal{F}_ i
such that the diagrams
\xymatrix{ \mathcal{F}|_{\mathcal{C}/U_ i \times _ U U_ j} \ar[d]_{\text{id}} \ar[r]_{\varphi _ i} & \mathcal{F}_ i|_{\mathcal{C}/U_ i \times _ U U_ j} \ar[d]^{\varphi _{ij}} \\ \mathcal{F}|_{\mathcal{C}/U_ i \times _ U U_ j} \ar[r]^{\varphi _ j} & \mathcal{F}_ j|_{\mathcal{C}/U_ i \times _ U U_ j} }
are commutative.
Proof.
Let us describe how to construct the sheaf \mathcal{F} on \mathcal{C}/U. Let a : V \to U be an object of \mathcal{C}/U. Then
\mathcal{F}(V/U) = \{ (s_ i)_{i \in I} \in \prod _{i \in I} \mathcal{F}_ i(U_ i \times _ U V/U_ i) \mid \varphi _{ij}(s_ i|_{U_ i \times _ U U_ j \times _ U V}) = s_ j|_{U_ i \times _ U U_ j \times _ U V} \}
We omit the construction of the restriction mappings. We omit the verification that this is a sheaf. We omit the construction of the isomorphisms \varphi _ i, and we omit proving the commutativity of the diagrams of the lemma.
\square
Comments (3)
Comment #1183 by JuanPablo on
Comment #1184 by Johan on
Comment #1185 by JuanPablo on