Lemma 78.9.4. Let S be a scheme. Let (G, m) be a group algebraic space over S. Let X be an algebraic space over S, and let a : G \times _ S X \to X be an action of G on X. Then X is a G-torsor in the fppf-topology in the sense of Definition 78.9.3 if and only if X is a G-torsor on (\mathit{Sch}/S)_{fppf} in the sense of Cohomology on Sites, Definition 21.4.1.
Proof. Omitted. \square
Comments (0)