Lemma 94.14.2. Up to a replacement as in Stacks, Remark 8.4.9 the functor

defines a stack in groupoids over $(\mathit{Sch}/S)_{fppf}$.

Let $\mathcal{G}$ be a sheaf of groups on $(\mathit{Sch}/S)_{fppf}$. For $U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$ we denote $\mathcal{G}|_ U$ the restriction of $\mathcal{G}$ to $(\mathit{Sch}/U)_{fppf}$. We define a category $\mathcal{G}\textit{-Torsors}$ as follows:

An object of $\mathcal{G}\textit{-Torsors}$ is a pair $(U, \mathcal{F})$ where $U$ is an object of $(\mathit{Sch}/S)_{fppf}$ and $\mathcal{F}$ is a $\mathcal{G}|_ U$-torsor, see Cohomology on Sites, Definition 21.4.1.

A morphism $(U, \mathcal{F}) \to (V, \mathcal{H})$ is given by a pair $(f, \alpha )$, where $f : U \to V$ is a morphism of schemes over $S$, and $\alpha : f^{-1}\mathcal{H} \to \mathcal{F}$ is an isomorphism of $\mathcal{G}|_ U$-torsors.

Thus $\mathcal{G}\textit{-Torsors}$ is a category and

\[ p : \mathcal{G}\textit{-Torsors} \longrightarrow (\mathit{Sch}/S)_{fppf}, \quad (U, \mathcal{F}) \longmapsto U \]

is a functor. Note that the fibre category of $\mathcal{G}\textit{-Torsors}$ over $U$ is the category of $\mathcal{G}|_ U$-torsors which is a groupoid.

Lemma 94.14.2. Up to a replacement as in Stacks, Remark 8.4.9 the functor

\[ p : \mathcal{G}\textit{-Torsors} \longrightarrow (\mathit{Sch}/S)_{fppf} \]

defines a stack in groupoids over $(\mathit{Sch}/S)_{fppf}$.

**Proof.**
The most difficult part of the proof is to show that we have descent for objects. Let $\{ U_ i \to U\} _{i \in I}$ be a covering of $(\mathit{Sch}/S)_{fppf}$. Suppose that for each $i$ we are given a $\mathcal{G}|_{U_ i}$-torsor $\mathcal{F}_ i$, and for each $i, j \in I$ an isomorphism $\varphi _{ij} : \mathcal{F}_ i|_{U_ i \times _ U U_ j} \to \mathcal{F}_ j|_{U_ i \times _ U U_ j}$ of $\mathcal{G}|_{U_ i \times _ U U_ j}$-torsors satisfying a suitable cocycle condition on $U_ i \times _ U U_ j \times _ U U_ k$. Then by Sites, Section 7.26 we obtain a sheaf $\mathcal{F}$ on $(\mathit{Sch}/U)_{fppf}$ whose restriction to each $U_ i$ recovers $\mathcal{F}_ i$ as well as recovering the descent data. By the equivalence of categories in Sites, Lemma 7.26.5 the action maps $\mathcal{G}|_{U_ i} \times \mathcal{F}_ i \to \mathcal{F}_ i$ glue to give a map $a : \mathcal{G}|_ U \times \mathcal{F} \to \mathcal{F}$. Now we have to show that $a$ is an action and that $\mathcal{F}$ becomes a $\mathcal{G}|_ U$-torsor. Both properties may be checked locally, and hence follow from the corresponding properties of the actions $\mathcal{G}|_{U_ i} \times \mathcal{F}_ i \to \mathcal{F}_ i$. This proves that descent for objects holds in $\mathcal{G}\textit{-Torsors}$. Some details omitted.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)