112.5.13 Taking roots of line bundles
This useful construction was discovered independently by Cadman and by Abramovich, Graber and Vistoli. Given a scheme $X$ with an effective Cartier divisor $D$, the $r$th root stack is an Artin stack branched over $X$ at $D$ with a $\mu _ r$ stabilizer over $D$ and scheme-like away from $D$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: