The Stacks project

Lemma 8.12.2. Let $u : \mathcal{C} \to \mathcal{D}$ be a continuous functor of sites. Let $p : \mathcal{S} \to \mathcal{D}$ be a stack over $\mathcal{D}$. Then $u^ p\mathcal{S}$ is a stack over $\mathcal{C}$.

Proof. We have seen in Lemma 8.12.1 that $u^ p\mathcal{S}$ is a fibred category over $\mathcal{C}$. Moreover, in the proof of that lemma we have seen that a morphism $(a, \beta )$ of $u^ p\mathcal{S}$ is strongly cartesian if and only $\beta $ is strongly cartesian in $\mathcal{S}$. Hence, given a morphism $a : U \to U'$ of $\mathcal{C}$, not only do we have the equalities $(u^ p\mathcal{S})_ U = \mathcal{S}_ U$ and $(u^ p\mathcal{S})_{U'} = \mathcal{S}_{U'}$, but via these equalities the pullback functors agree; in a formula $a^*(U', y') = (U, u(a)^*y')$.

Having said this, let $\mathcal{U} = \{ U_ i \to U\} $ be a covering of $\mathcal{C}$. As $u$ is continuous we see that $\mathcal{V} = \{ u(U_ i) \to u(U)\} $ is a covering of $\mathcal{D}$, and that $u(U_ i \times _ U U_ j) = u(U_ i) \times _{u(U)} u(U_ j)$ and similarly for the triple fibre products $U_ i \times _ U U_ j \times _ U U_ k$. As we have the identifications of fibre categories and pullbacks we see that descend data relative to $\mathcal{U}$ are identical to descend data relative to $\mathcal{V}$. Since by assumption we have effective descent in $\mathcal{S}$ we conclude the same holds for $u^ p\mathcal{S}$. $\square$

Comments (2)

Comment #1100 by S.Carnahan on

The conclusion should say that is a stack over (instead of ), and the first sentence in the proof should say that is a fibred category over (instead of ). The same typo is in the statement of 04WD.

There are also:

  • 2 comment(s) on Section 8.12: Functoriality for stacks

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04WC. Beware of the difference between the letter 'O' and the digit '0'.