Lemma 8.12.11. Let $f : \mathcal{D} \to \mathcal{C}$ be a morphism of sites given by a continuous functor $u : \mathcal{C} \to \mathcal{D}$ satisfying the hypotheses and conclusions of Sites, Proposition 7.14.7. Let $\mathcal{S} \to \mathcal{C}$ be a fibred category, and let $\mathcal{S} \to \mathcal{S}'$ be the stackification of $\mathcal{S}$. Then $f^{-1}\mathcal{S}'$ is the stackification of $u_ p\mathcal{S}$.
Proof. Omitted. Hint: This is the analogue of Sites, Lemma 7.13.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: