The Stacks project

Diagonals of morphisms of algebraic stacks are representable by algebraic spaces and locally of finite type.

Lemma 101.3.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Then

  1. $\Delta _ f$ is representable by algebraic spaces, and

  2. $\Delta _ f$ is locally of finite type.

Proof. Let $T$ be a scheme and let $a : T \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ be a morphism. By definition of the fibre product and the $2$-Yoneda lemma the morphism $a$ is given by a triple $a = (x, x', \alpha )$ where $x, x'$ are objects of $\mathcal{X}$ over $T$, and $\alpha : f(x) \to f(x')$ is a morphism in the fibre category of $\mathcal{Y}$ over $T$. By definition of an algebraic stack the sheaves $\mathit{Isom}_\mathcal {X}(x, x')$ and $\mathit{Isom}_\mathcal {Y}(f(x), f(x'))$ are algebraic spaces over $T$. In this language $\alpha $ defines a section of the morphism $\mathit{Isom}_\mathcal {Y}(f(x), f(x')) \to T$. A $T'$-valued point of $\mathcal{X} \times _{\mathcal{X} \times _\mathcal {Y} \mathcal{X}, a} T$ for $T' \to T$ a scheme over $T$ is the same thing as an isomorphism $x|_{T'} \to x'|_{T'}$ whose image under $f$ is $\alpha |_{T'}$. Thus we see that

101.3.3.1
\begin{equation} \label{stacks-morphisms-equation-diagonal} \vcenter { \xymatrix{ \mathcal{X} \times _{\mathcal{X} \times _\mathcal {Y} \mathcal{X}, a} T \ar[d] \ar[r] & \mathit{Isom}_\mathcal {X}(x, x') \ar[d] \\ T\ar[r]^-\alpha & \mathit{Isom}_\mathcal {Y}(f(x), f(x')) } } \end{equation}

is a fibre square of sheaves over $T$. In particular we see that $\mathcal{X} \times _{\mathcal{X} \times _\mathcal {Y} \mathcal{X}, a} T$ is an algebraic space which proves part (1) of the lemma.

To prove the second statement we have to show that the left vertical arrow of Diagram (101.3.3.1) is locally of finite type. By Lemma 101.3.1 the algebraic space $\mathit{Isom}_\mathcal {X}(x, x')$ and is locally of finite type over $T$. Hence the right vertical arrow of Diagram (101.3.3.1) is locally of finite type, see Morphisms of Spaces, Lemma 67.23.6. We conclude by Morphisms of Spaces, Lemma 67.23.3. $\square$


Comments (1)

Comment #882 by on

Suggested slogan: Diagonals of morphisms of algebraic stacks are representable by algebraic spaces and locally of finite type.

There are also:

  • 4 comment(s) on Section 101.3: Properties of diagonals

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04XS. Beware of the difference between the letter 'O' and the digit '0'.