The Stacks project

Definition 101.4.2. Let $\mathcal{X}$ be an algebraic stack over the base scheme $S$. Denote $p : \mathcal{X} \to S$ the structure morphism.

  1. We say $\mathcal{X}$ is DM over $S$ if $p : \mathcal{X} \to S$ is DM.

  2. We say $\mathcal{X}$ is quasi-DM over $S$ if $p : \mathcal{X} \to S$ is quasi-DM.

  3. We say $\mathcal{X}$ is separated over $S$ if $p : \mathcal{X} \to S$ is separated.

  4. We say $\mathcal{X}$ is quasi-separated over $S$ if $p : \mathcal{X} \to S$ is quasi-separated.

  5. We say $\mathcal{X}$ is DM if $\mathcal{X}$ is DM1 over $\mathop{\mathrm{Spec}}(\mathbf{Z})$.

  6. We say $\mathcal{X}$ is quasi-DM if $\mathcal{X}$ is quasi-DM over $\mathop{\mathrm{Spec}}(\mathbf{Z})$.

  7. We say $\mathcal{X}$ is separated if $\mathcal{X}$ is separated over $\mathop{\mathrm{Spec}}(\mathbf{Z})$.

  8. We say $\mathcal{X}$ is quasi-separated if $\mathcal{X}$ is quasi-separated over $\mathop{\mathrm{Spec}}(\mathbf{Z})$.

In the last 4 definitions we view $\mathcal{X}$ as an algebraic stack over $\mathop{\mathrm{Spec}}(\mathbf{Z})$ via Algebraic Stacks, Definition 94.19.2.

[1] Theorem 101.21.6 shows that this is equivalent to $\mathcal{X}$ being a Deligne-Mumford stack.

Comments (0)

There are also:

  • 2 comment(s) on Section 101.4: Separation axioms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 050D. Beware of the difference between the letter 'O' and the digit '0'.