Lemma 10.115.1. Let $n \in \mathbf{N}$. Let $N$ be a finite nonempty set of multi-indices $\nu = (\nu _1, \ldots , \nu _ n)$. Given $e = (e_1, \ldots , e_ n)$ we set $e \cdot \nu = \sum e_ i\nu _ i$. Then for $e_1 \gg e_2 \gg \ldots \gg e_{n-1} \gg e_ n$ we have: If $\nu , \nu ' \in N$ then
Proof. Say $N = \{ \nu _ j\} $ with $\nu _ j = (\nu _{j1}, \ldots , \nu _{jn})$. Let $A_ i = \max _ j \nu _{ji} - \min _ j \nu _{ji}$. If for each $i$ we have $e_{i - 1} > A_ ie_ i + A_{i + 1}e_{i + 1} + \ldots + A_ ne_ n$ then the lemma holds. For suppose that $e \cdot (\nu - \nu ') = 0$. Then for $n \ge 2$,
We may assume that $(\nu _1 - \nu '_1) \ge 0$. If $(\nu _1 - \nu '_1) > 0$, then
This contradiction implies that $\nu '_1 = \nu _1$. By induction, $\nu '_ i = \nu _ i$ for $2 \le i \le n$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2830 by Dario Weißmann on
Comment #2929 by Johan on
There are also: