Lemma 10.115.1. Let $n \in \mathbf{N}$. Let $N$ be a finite nonempty set of multi-indices $\nu = (\nu _1, \ldots , \nu _ n)$. Given $e = (e_1, \ldots , e_ n)$ we set $e \cdot \nu = \sum e_ i\nu _ i$. Then for $e_1 \gg e_2 \gg \ldots \gg e_{n-1} \gg e_ n$ we have: If $\nu , \nu ' \in N$ then

**Proof.**
Say $N = \{ \nu _ j\} $ with $\nu _ j = (\nu _{j1}, \ldots , \nu _{jn})$. Let $A_ i = \max _ j \nu _{ji} - \min _ j \nu _{ji}$. If for each $i$ we have $e_{i - 1} > A_ ie_ i + A_{i + 1}e_{i + 1} + \ldots + A_ ne_ n$ then the lemma holds. For suppose that $e \cdot (\nu - \nu ') = 0$. Then for $n \ge 2$,

We may assume that $(\nu _1 - \nu '_1) \ge 0$. If $(\nu _1 - \nu '_1) > 0$, then

This contradiction implies that $\nu '_1 = \nu _1$. By induction, $\nu '_ i = \nu _ i$ for $2 \le i \le n$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #2830 by Dario Weißmann on

Comment #2929 by Johan on

There are also: