Lemma 10.115.1. Let n \in \mathbf{N}. Let N be a finite nonempty set of multi-indices \nu = (\nu _1, \ldots , \nu _ n). Given e = (e_1, \ldots , e_ n) we set e \cdot \nu = \sum e_ i\nu _ i. Then for e_1 \gg e_2 \gg \ldots \gg e_{n-1} \gg e_ n we have: If \nu , \nu ' \in N then
(e \cdot \nu = e \cdot \nu ') \Leftrightarrow (\nu = \nu ')
Proof. Say N = \{ \nu _ j\} with \nu _ j = (\nu _{j1}, \ldots , \nu _{jn}). Let A_ i = \max _ j \nu _{ji} - \min _ j \nu _{ji}. If for each i we have e_{i - 1} > A_ ie_ i + A_{i + 1}e_{i + 1} + \ldots + A_ ne_ n then the lemma holds. For suppose that e \cdot (\nu - \nu ') = 0. Then for n \ge 2,
e_1(\nu _1 - \nu '_1) = \sum \nolimits _{i = 2}^ n e_ i(\nu '_ i - \nu _ i).
We may assume that (\nu _1 - \nu '_1) \ge 0. If (\nu _1 - \nu '_1) > 0, then
e_1(\nu _1 - \nu '_1) \ge e_1 > A_2e_2 + \ldots + A_ ne_ n \ge \sum \nolimits _{i = 2}^ n e_ i|\nu '_ i - \nu _ i| \ge \sum \nolimits _{i = 2}^ n e_ i(\nu '_ i - \nu _ i).
This contradiction implies that \nu '_1 = \nu _1. By induction, \nu '_ i = \nu _ i for 2 \le i \le n. \square
Comments (2)
Comment #2830 by Dario Weißmann on
Comment #2929 by Johan on
There are also: