The Stacks project

Lemma 15.25.2. Let $R \to S$ be a ring homomorphism. Assume

  1. there exist finitely many primes $\mathfrak p_1, \ldots , \mathfrak p_ m$ of $R$ such that the map $R \to \prod R_{\mathfrak p_ j}$ is injective,

  2. $R \to S$ is of finite type,

  3. $S$ flat over $R$, and

  4. for every prime $\mathfrak p$ of $R$ the ring $S_{\mathfrak p}$ is of finite presentation over $R_{\mathfrak p}$.

Then $S$ is of finite presentation over $R$.

Proof. By assumption $S$ is a quotient of a polynomial ring over $R$. Thus the result follows directly from Lemma 15.25.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 053B. Beware of the difference between the letter 'O' and the digit '0'.