The Stacks project

Lemma 10.66.4. Let $R$ be a ring. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of $R$-modules. Then $\text{WeakAss}(M') \subset \text{WeakAss}(M)$ and $\text{WeakAss}(M) \subset \text{WeakAss}(M') \cup \text{WeakAss}(M'')$.

Proof. We will use the characterization of weakly associated primes of Lemma 10.66.2. Let $\mathfrak p$ be a prime of $R$. As localization is exact we obtain the short exact sequence $0 \to M'_{\mathfrak p} \to M_{\mathfrak p} \to M''_{\mathfrak p} \to 0$. Suppose that $m \in M_{\mathfrak p}$ is an element whose annihilator has radical $\mathfrak pR_{\mathfrak p}$. Then either the image $\overline{m}$ of $m$ in $M''_{\mathfrak p}$ is zero and $m \in M'_{\mathfrak p}$, or the radical of the annihilator of $\overline{m}$ is $\mathfrak pR_{\mathfrak p}$. This proves that $\text{WeakAss}(M) \subset \text{WeakAss}(M') \cup \text{WeakAss}(M'')$. The inclusion $\text{WeakAss}(M') \subset \text{WeakAss}(M)$ is immediate from the definitions. $\square$


Comments (2)

Comment #4824 by Bogdan on

"or the annihilator of is '' should read "or the radical of the annihilator of is ''.

There are also:

  • 3 comment(s) on Section 10.66: Weakly associated primes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0548. Beware of the difference between the letter 'O' and the digit '0'.