Lemma 10.40.2. Let R be a ring. Let M be an R-module. Then
M = (0) \Leftrightarrow \text{Supp}(M) = \emptyset .
A module over a ring has empty support if and only if it is the trivial module.
Lemma 10.40.2. Let R be a ring. Let M be an R-module. Then
Proof. Actually, Lemma 10.23.1 even shows that \text{Supp}(M) always contains a maximal ideal if M is not zero. \square
Comments (1)
Comment #880 by Konrad Voelkel on
There are also: