Definition 10.88.2. Let f: M \to N and g: M \to M' be maps of R-modules. Then we say g dominates f if for any R-module Q, we have \mathop{\mathrm{Ker}}(f \otimes _ R \text{id}_ Q) \subset \mathop{\mathrm{Ker}}(g \otimes _ R \text{id}_ Q).
Definition 10.88.2. Let f: M \to N and g: M \to M' be maps of R-modules. Then we say g dominates f if for any R-module Q, we have \mathop{\mathrm{Ker}}(f \otimes _ R \text{id}_ Q) \subset \mathop{\mathrm{Ker}}(g \otimes _ R \text{id}_ Q).
Comments (0)