Proof.
First we prove (1) implies (2). Suppose M is Mittag-Leffler and let x be in the kernel of M \otimes _ R (\prod _{\alpha } Q_{\alpha }) \to \prod _{\alpha } (M \otimes _ R Q_{\alpha }). Write M as a colimit M = \mathop{\mathrm{colim}}\nolimits _{i \in I} M_ i of a directed system of finitely presented modules M_ i. Then M \otimes _ R (\prod _{\alpha } Q_{\alpha }) is the colimit of M_ i \otimes _ R (\prod _{\alpha } Q_{\alpha }). So x is the image of an element x_ i \in M_ i \otimes _ R (\prod _{\alpha } Q_{\alpha }). We must show that x_ i maps to 0 in M_ j \otimes _ R (\prod _{\alpha } Q_{\alpha }) for some j \geq i. Since M is Mittag-Leffler, we may choose j \geq i such that M_ i \to M_ j and M_ i \to M dominate each other. Then consider the commutative diagram
\xymatrix{ M \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r] & \prod _{\alpha } (M \otimes _ R Q_{\alpha }) \\ M_ i \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r]^{\cong } \ar[d] \ar[u] & \prod _{\alpha } (M_ i \otimes _ R Q_{\alpha }) \ar[d] \ar[u] \\ M_ j \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r]^{\cong } & \prod _{\alpha } (M_ j \otimes _ R Q_{\alpha }) }
whose bottom two horizontal maps are isomorphisms, according to Proposition 10.89.3. Since x_ i maps to 0 in \prod _{\alpha } (M \otimes _ R Q_{\alpha }), its image in \prod _{\alpha } (M_ i \otimes _ R Q_{\alpha }) is in the kernel of the map \prod _{\alpha } (M_ i \otimes _ R Q_{\alpha }) \to \prod _{\alpha } (M \otimes _ R Q_{\alpha }). But this kernel equals the kernel of \prod _{\alpha } (M_ i \otimes _ R Q_{\alpha }) \to \prod _{\alpha } (M_ j \otimes _ R Q_{\alpha }) according to the choice of j. Thus x_ i maps to 0 in \prod _{\alpha } (M_ j \otimes _ R Q_{\alpha }) and hence to 0 in M_ j \otimes _ R (\prod _{\alpha } Q_{\alpha }).
Now suppose (2) holds. We prove M satisfies formulation (1) of being Mittag-Leffler from Proposition 10.88.6. Let f: P \to M be a map from a finitely presented module P to M. Choose a set B of representatives of the isomorphism classes of finitely presented R-modules. Let A be the set of pairs (Q, x) where Q \in B and x \in \mathop{\mathrm{Ker}}(P \otimes Q \to M \otimes Q). For \alpha = (Q, x) \in A, we write Q_{\alpha } for Q and x_{\alpha } for x. Consider the commutative diagram
\xymatrix{ M \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r] & \prod _{\alpha } (M \otimes _ R Q_{\alpha }) \\ P \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r]^{\cong } \ar[u] & \prod _{\alpha } (P \otimes _ R Q_{\alpha }) \ar[u] . }
The top arrow is an injection by assumption, and the bottom arrow is an isomorphism by Proposition 10.89.3. Let x \in P \otimes _ R (\prod _{\alpha } Q_{\alpha }) be the element corresponding to (x_{\alpha }) \in \prod _{\alpha } (P \otimes _ R Q_{\alpha }) under this isomorphism. Then x \in \mathop{\mathrm{Ker}}( P \otimes _ R (\prod _{\alpha } Q_{\alpha }) \to M \otimes _ R (\prod _{\alpha } Q_{\alpha })) since the top arrow in the diagram is injective. By Lemma 10.89.4, we get a finitely presented module P' and a map f': P \to P' such that f: P \to M factors through f' and x \in \mathop{\mathrm{Ker}}(P \otimes _ R (\prod _{\alpha } Q_{\alpha }) \to P' \otimes _ R (\prod _{\alpha } Q_{\alpha })). We have a commutative diagram
\xymatrix{ P' \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r]^{\cong } & \prod _{\alpha } (P' \otimes _ R Q_{\alpha }) \\ P \otimes _ R (\prod _{\alpha } Q_{\alpha }) \ar[r]^{\cong } \ar[u] & \prod _{\alpha } (P \otimes _ R Q_{\alpha }) \ar[u] . }
where both the top and bottom arrows are isomorphisms by Proposition 10.89.3. Thus since x is in the kernel of the left vertical map, (x_{\alpha }) is in the kernel of the right vertical map. This means x_{\alpha } \in \mathop{\mathrm{Ker}}(P \otimes _ R Q_{\alpha } \to P' \otimes _ R Q_{\alpha }) for every \alpha \in A. By the definition of A this means \mathop{\mathrm{Ker}}(P \otimes _ R Q \to P' \otimes _ R Q) \supset \mathop{\mathrm{Ker}}(P \otimes _ R Q \to M \otimes _ R Q) for all finitely presented Q and, since f: P \to M factors through f': P \to P', actually equality holds. By Lemma 10.88.3, f and f' dominate each other.
\square
Comments (0)
There are also: