Proof.
By definition an element x of the left hand side is x = (x_ n) where x_ n = (x_{n, \alpha }) \in \bigoplus \nolimits _{\alpha \in A} R/I^ n such that x_{n, \alpha } = x_{n + 1, \alpha } \bmod I^ n. As R = R^\wedge we see that for any \alpha there exists a y_\alpha \in R such that x_{n, \alpha } = y_\alpha \bmod I^ n. Note that for each n there are only finitely many \alpha such that the elements x_{n, \alpha } are nonzero. Conversely, given (y_\alpha ) \in \prod _\alpha R such that for each n there are only finitely many \alpha such that y_{\alpha } \bmod I^ n is nonzero, then this defines an element of the left hand side. Hence we can think of an element of the left hand side as infinite “convergent sums” \sum _\alpha y_\alpha with y_\alpha \in R such that for each n there are only finitely many y_\alpha which are nonzero modulo I^ n. The displayed map maps this element to the element to (y_\alpha ) in the product. In particular the map is injective.
Let Q be a finite R-module. We have to show that the map
Q \otimes _ R \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \longrightarrow Q \otimes _ R \left(\prod \nolimits _{\alpha \in A} R\right)
is injective, see Algebra, Theorem 10.82.3. Choose a presentation R^{\oplus k} \to R^{\oplus m} \to Q \to 0 and denote q_1, \ldots , q_ m \in Q the corresponding generators for Q. By Artin-Rees (Algebra, Lemma 10.51.2) there exists a constant c such that \mathop{\mathrm{Im}}(R^{\oplus k} \to R^{\oplus m}) \cap (I^ N)^{\oplus m} \subset \mathop{\mathrm{Im}}((I^{N - c})^{\oplus k} \to R^{\oplus m}). Let us contemplate the diagram
\xymatrix{ \bigoplus _{l = 1}^ k \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \ar[r] \ar[d] & \bigoplus _{j = 1}^ m \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \ar[r] \ar[d] & Q \otimes _ R \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \ar[r] \ar[d] & 0 \\ \bigoplus _{l = 1}^ k \left(\prod \nolimits _{\alpha \in A} R\right) \ar[r] & \bigoplus _{j = 1}^ m \left(\prod \nolimits _{\alpha \in A} R\right) \ar[r] & Q \otimes _ R \left(\prod \nolimits _{\alpha \in A} R\right) \ar[r] & 0 }
with exact rows. Pick an element \sum _ j \sum _\alpha y_{j, \alpha } of \bigoplus _{j = 1, \ldots , m} \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge . If this element maps to zero in the module Q \otimes _ R \left(\prod \nolimits _{\alpha \in A} R\right), then we see in particular that \sum _ j q_ j \otimes y_{j, \alpha } = 0 in Q for each \alpha . Thus we can find an element (z_{1, \alpha }, \ldots , z_{k, \alpha }) \in \bigoplus _{l = 1, \ldots , k} R which maps to (y_{1, \alpha }, \ldots , y_{m, \alpha }) \in \bigoplus _{j = 1, \ldots , m} R. Moreover, if y_{j, \alpha } \in I^{N_\alpha } for j = 1, \ldots , m, then we may assume that z_{l, \alpha } \in I^{N_\alpha - c} for l = 1, \ldots , k. Hence the sum \sum _ l \sum _\alpha z_{l, \alpha } is “convergent” and defines an element of \bigoplus _{l = 1, \ldots , k} \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge which maps to the element \sum _ j \sum _\alpha y_{j, \alpha } we started out with. Thus the right vertical arrow is injective and we win.
\square
Comments (0)