Processing math: 100%

The Stacks project

Lemma 15.27.1. Let R be a ring. Let I \subset R be an ideal. Let A be a set. Assume R is Noetherian and complete with respect to I. There is a canonical map

\left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \longrightarrow \prod \nolimits _{\alpha \in A} R

from the I-adic completion of the direct sum into the product which is universally injective.

Proof. By definition an element x of the left hand side is x = (x_ n) where x_ n = (x_{n, \alpha }) \in \bigoplus \nolimits _{\alpha \in A} R/I^ n such that x_{n, \alpha } = x_{n + 1, \alpha } \bmod I^ n. As R = R^\wedge we see that for any \alpha there exists a y_\alpha \in R such that x_{n, \alpha } = y_\alpha \bmod I^ n. Note that for each n there are only finitely many \alpha such that the elements x_{n, \alpha } are nonzero. Conversely, given (y_\alpha ) \in \prod _\alpha R such that for each n there are only finitely many \alpha such that y_{\alpha } \bmod I^ n is nonzero, then this defines an element of the left hand side. Hence we can think of an element of the left hand side as infinite “convergent sums” \sum _\alpha y_\alpha with y_\alpha \in R such that for each n there are only finitely many y_\alpha which are nonzero modulo I^ n. The displayed map maps this element to the element to (y_\alpha ) in the product. In particular the map is injective.

Let Q be a finite R-module. We have to show that the map

Q \otimes _ R \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \longrightarrow Q \otimes _ R \left(\prod \nolimits _{\alpha \in A} R\right)

is injective, see Algebra, Theorem 10.82.3. Choose a presentation R^{\oplus k} \to R^{\oplus m} \to Q \to 0 and denote q_1, \ldots , q_ m \in Q the corresponding generators for Q. By Artin-Rees (Algebra, Lemma 10.51.2) there exists a constant c such that \mathop{\mathrm{Im}}(R^{\oplus k} \to R^{\oplus m}) \cap (I^ N)^{\oplus m} \subset \mathop{\mathrm{Im}}((I^{N - c})^{\oplus k} \to R^{\oplus m}). Let us contemplate the diagram

\xymatrix{ \bigoplus _{l = 1}^ k \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \ar[r] \ar[d] & \bigoplus _{j = 1}^ m \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \ar[r] \ar[d] & Q \otimes _ R \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge \ar[r] \ar[d] & 0 \\ \bigoplus _{l = 1}^ k \left(\prod \nolimits _{\alpha \in A} R\right) \ar[r] & \bigoplus _{j = 1}^ m \left(\prod \nolimits _{\alpha \in A} R\right) \ar[r] & Q \otimes _ R \left(\prod \nolimits _{\alpha \in A} R\right) \ar[r] & 0 }

with exact rows. Pick an element \sum _ j \sum _\alpha y_{j, \alpha } of \bigoplus _{j = 1, \ldots , m} \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge . If this element maps to zero in the module Q \otimes _ R \left(\prod \nolimits _{\alpha \in A} R\right), then we see in particular that \sum _ j q_ j \otimes y_{j, \alpha } = 0 in Q for each \alpha . Thus we can find an element (z_{1, \alpha }, \ldots , z_{k, \alpha }) \in \bigoplus _{l = 1, \ldots , k} R which maps to (y_{1, \alpha }, \ldots , y_{m, \alpha }) \in \bigoplus _{j = 1, \ldots , m} R. Moreover, if y_{j, \alpha } \in I^{N_\alpha } for j = 1, \ldots , m, then we may assume that z_{l, \alpha } \in I^{N_\alpha - c} for l = 1, \ldots , k. Hence the sum \sum _ l \sum _\alpha z_{l, \alpha } is “convergent” and defines an element of \bigoplus _{l = 1, \ldots , k} \left(\bigoplus \nolimits _{\alpha \in A} R\right)^\wedge which maps to the element \sum _ j \sum _\alpha y_{j, \alpha } we started out with. Thus the right vertical arrow is injective and we win. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.