Lemma 10.63.11. Let \varphi : R \to S be a ring map. Let M be an S-module. Then \mathop{\mathrm{Spec}}(\varphi )(\text{Ass}_ S(M)) \subset \text{Ass}_ R(M).
Proof. If \mathfrak q \in \text{Ass}_ S(M), then there exists an m in M such that the annihilator of m in S is \mathfrak q. Then the annihilator of m in R is \mathfrak q \cap R. \square
Comments (0)
There are also: