The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.87.9. If $R$ is a ring and $M$, $N$ are Mittag-Leffler modules over $R$, then $M \otimes _ R N$ is a Mittag-Leffler module.

Proof. Write $M = \mathop{\mathrm{colim}}\nolimits _{i \in I} M_ i$ and $N = \mathop{\mathrm{colim}}\nolimits _{j \in J} N_ j$ as directed colimits of finitely presented $R$-modules. Denote $f_{ii'} : M_ i \to M_{i'}$ and $g_{jj'} : N_ j \to N_{j'}$ the transition maps. Then $M_ i \otimes _ R N_ j$ is a finitely presented $R$-module (see Lemma 10.11.14), and $M \otimes _ R N = \mathop{\mathrm{colim}}\nolimits _{(i, j) \in I \times J} M_ i \otimes _ R M_ j$. Pick $(i, j) \in I \times J$. By the definition of a Mittag-Leffler module we have Proposition 10.87.6 (3) for both systems. In other words there exist $i' \geq i$ and $j' \geq j$ such that for every choice of $i'' \geq i$ and $j'' \geq j$ there exist maps $a : M_{i''} \to M_{i'}$ and $b : M_{j''} \to M_{j'}$ such that $f_{ii'} = a \circ f_{ii''}$ and $g_{jj'} = b \circ g_{jj''}$. Then it is clear that $a \otimes b : M_{i''} \otimes _ R N_{j''} \to M_{i'} \otimes _ R N_{j'}$ serves the same purpose for the system $(M_ i \otimes _ R N_ j, f_{ii'} \otimes g_{jj'})$. Thus by the characterization Proposition 10.87.6 (3) we conclude that $M \otimes _ R N$ is Mittag-Leffler. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05CN. Beware of the difference between the letter 'O' and the digit '0'.