The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.87.12. Let $R$ be a ring. Let $S = R/I$ for some finitely generated ideal $I$. Let $M$ be an $S$-module. Then $M$ is a Mittag-Leffler module over $R$ if and only if $M$ is a Mittag-Leffler module over $S$.

Proof. One implication follows from Lemma 10.87.11. To prove the other, assume $M$ is Mittag-Leffler as an $R$-module. Write $M = \mathop{\mathrm{colim}}\nolimits M_ i$ as a directed colimit of finitely presented $S$-modules. As $I$ is finitely generated, the ring $S$ is finite and finitely presented as an $R$-algebra, hence the modules $M_ i$ are finitely presented as $R$-modules, see Lemma 10.35.23. Next, let $N$ be any $S$-module. Note that for each $i$ we have $\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, N) = \mathop{\mathrm{Hom}}\nolimits _ S(M_ i, N)$ as $R \to S$ is surjective. Hence the condition that the inverse system $(\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, N))_ i$ satisfies Mittag-Leffler, implies that the system $(\mathop{\mathrm{Hom}}\nolimits _ S(M_ i, N))_ i$ satisfies Mittag-Leffler. Thus $M$ is Mittag-Leffler over $S$ by definition. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05CR. Beware of the difference between the letter 'O' and the digit '0'.