Definition 15.88.1. Let $R$ be a ring. Let $M$ be an $R$-module.

Let $I \subset R$ be an ideal. We say $M$ is an

*$I$-power torsion module*if for every $m \in M$ there exists an $n > 0$ such that $I^ n m = 0$.Let $f \in R$. We say $M$ is

*an $f$-power torsion module*if for each $m \in M$, there exists an $n > 0$ such that $f^ n m = 0$.

## Comments (0)