Processing math: 100%

The Stacks project

Lemma 47.9.8. Let A \to B be a flat ring map and let I \subset A be a finitely generated ideal such that A/I \to B/IB is an isomorphism. For K \in D_{I^\infty \text{-torsion}}(A) and L \in D(A) the map

R\mathop{\mathrm{Hom}}\nolimits _ A(K, L) \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ B(K \otimes _ A B, L \otimes _ A B)

is a quasi-isomorphism. In particular, if M, N are A-modules and M is I-power torsion, then the canonical map

\mathop{\mathrm{Ext}}\nolimits ^ i_ A(M, N) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^ i_ B(M \otimes _ A B, N \otimes _ A B)

is an isomorphism for all i.

Proof. Let Z = V(I) \subset \mathop{\mathrm{Spec}}(A) and Y = V(IB) \subset \mathop{\mathrm{Spec}}(B). Since the cohomology modules of K are I power torsion, the canonical map R\Gamma _ Z(L) \to L induces an isomorphism

R\mathop{\mathrm{Hom}}\nolimits _ A(K, R\Gamma _ Z(L)) \to R\mathop{\mathrm{Hom}}\nolimits _ A(K, L)

in D(A). Similarly, the cohomology modules of K \otimes _ A B are IB power torsion and we have an isomorphism

R\mathop{\mathrm{Hom}}\nolimits _ B(K \otimes _ A B, R\Gamma _ Y(L \otimes _ A B)) \to R\mathop{\mathrm{Hom}}\nolimits _ B(K \otimes _ A B, L \otimes _ A B)

in D(B). By Lemma 47.9.3 we have R\Gamma _ Z(L) \otimes _ A B = R\Gamma _ Y(L \otimes _ A B). Hence it suffices to show that the map

R\mathop{\mathrm{Hom}}\nolimits _ A(K, R\Gamma _ Z(L)) \to R\mathop{\mathrm{Hom}}\nolimits _ B(K \otimes _ A B, R\Gamma _ Z(L) \otimes _ A B)

is a quasi-isomorphism. This follows from Lemma 47.9.7. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 47.9: Local cohomology

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.