Lemma 10.78.2. Let $R$ be a ring. Let $\varphi : M \to N$ be a map of $R$-modules with $M$ finite and $N$ finitely presented. Then

is an open subset of $\mathop{\mathrm{Spec}}(R)$.

Lemma 10.78.2. Let $R$ be a ring. Let $\varphi : M \to N$ be a map of $R$-modules with $M$ finite and $N$ finitely presented. Then

\[ U = \{ \mathfrak p \subset R \mid \varphi _{\mathfrak p} : M_{\mathfrak p} \to N_{\mathfrak p} \text{ is an isomorphism}\} \]

is an open subset of $\mathop{\mathrm{Spec}}(R)$.

**Proof.**
Let $\mathfrak p \in U$. Pick a presentation $N = R^{\oplus n}/\sum _{j = 1, \ldots , m} R k_ j$. Denote $e_ i$ the image in $N$ of the $i$th basis vector of $R^{\oplus n}$. For each $i \in \{ 1, \ldots , n\} $ choose an element $m_ i \in M_{\mathfrak p}$ such that $\varphi (m_ i) = f_ i e_ i$ for some $f_ i \in R$, $f_ i \not\in \mathfrak p$. This is possible as $\varphi _{\mathfrak p}$ is an isomorphism. Set $f = f_1 \ldots f_ n$ and let $\psi : R_ f^{\oplus n} \to M_ f$ be the map which maps the $i$th basis vector to $m_ i/f_ i$. Note that $\varphi _ f \circ \psi $ is the localization at $f$ of the given map $R^{\oplus n} \to N$. As $\varphi _{\mathfrak p}$ is an isomorphism we see that $\psi (k_ j)$ is an element of $M$ which maps to zero in $M_{\mathfrak p}$. Hence we see that there exist $g_ j \in R$, $g_ j \not\in \mathfrak p$ such that $g_ j \psi (k_ j) = 0$. Setting $g = g_1 \ldots g_ m$, we see that $\psi _ g$ factors through $N_{fg}$ to give a map $\chi : N_{fg} \to M_{fg}$. By construction $\chi $ is a right inverse to $\varphi _{fg}$. It follows that $\chi _\mathfrak p$ is an isomorphism. By Lemma 10.78.1 there is an $h \in R$, $h \not\in \mathfrak p$ such that $\chi _ h : N_{fgh} \to M_{fgh}$ is surjective. Hence $\varphi _{fgh}$ and $\chi _ h$ are mutually inverse maps, which implies that $D(fgh) \subset U$ as desired.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #2909 by Dario Weißmann on

Comment #2941 by Johan on