Lemma 15.19.5. In Situation 15.19.1. Let $I \subset R$ be an ideal. Assume
$R$ is a Noetherian ring,
$S$ is a Noetherian ring,
$M$ is a finite $S$-module, and
for each $n \geq 1$ and any prime $\mathfrak q \in V(J + IS)$ the module $(M/I^ n M)_{\mathfrak q}$ is flat over $R/I^ n$.
Then (15.19.1.1) holds for $(R, I)$, i.e., for every prime $\mathfrak q \in V(J + IS)$ the localization $M_{\mathfrak q}$ is flat over $R$.
Comments (0)