Lemma 10.127.8. Suppose that $R = \mathop{\mathrm{colim}}\nolimits _{\lambda \in \Lambda } R_\lambda$ is a directed colimit of rings. Then the category of finitely presented $R$-algebras is the colimit of the categories of finitely presented $R_\lambda$-algebras. More precisely

1. Given a finitely presented $R$-algebra $A$ there exists a $\lambda \in \Lambda$ and a finitely presented $R_\lambda$-algebra $A_\lambda$ such that $A \cong A_\lambda \otimes _{R_\lambda } R$.

2. Given a $\lambda \in \Lambda$, finitely presented $R_\lambda$-algebras $A_\lambda , B_\lambda$, and an $R$-algebra map $\varphi : A_\lambda \otimes _{R_\lambda } R \to B_\lambda \otimes _{R_\lambda } R$, then there exists a $\mu \geq \lambda$ and an $R_\mu$-algebra map $\varphi _\mu : A_\lambda \otimes _{R_\lambda } R_\mu \to B_\lambda \otimes _{R_\lambda } R_\mu$ such that $\varphi = \varphi _\mu \otimes 1_ R$.

3. Given a $\lambda \in \Lambda$, finitely presented $R_\lambda$-algebras $A_\lambda , B_\lambda$, and $R_\lambda$-algebra maps $\varphi _\lambda , \psi _\lambda : A_\lambda \to B_\lambda$ such that $\varphi \otimes 1_ R = \psi \otimes 1_ R$, then $\varphi \otimes 1_{R_\mu } = \psi \otimes 1_{R_\mu }$ for some $\mu \geq \lambda$.

Proof. To prove (1) choose a presentation $A = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$. We can choose a $\lambda \in \Lambda$ and elements $f_{\lambda , j} \in R_\lambda [x_1, \ldots , x_ n]$ mapping to $f_ j \in R[x_1, \ldots , x_ n]$. Then we simply let $A_\lambda = R_\lambda [x_1, \ldots , x_ n]/(f_{\lambda , 1}, \ldots , f_{\lambda , m})$.

Parts (2) and (3) follow from Lemma 10.127.7. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).