Proof.
Parts (2) and (3) are immediate from the construction. To see (1), let $\chi : M \to N$ be an $R$-module map. We claim there exists a canonical commutative diagram
\[ \xymatrix{ \bigoplus _{\mathfrak a} \bigoplus _{\varphi \in \mathop{\mathrm{Hom}}\nolimits _ R(\mathfrak a, M)} \mathfrak {a} \ar[r] \ar[d] \ar[rrd] & M \ar[rrd]^\chi \\ \bigoplus _{\mathfrak a} \bigoplus _{\varphi \in \mathop{\mathrm{Hom}}\nolimits _ R(\mathfrak a, M)} R \ar[rrd] & & \bigoplus _{\mathfrak a} \bigoplus _{\psi \in \mathop{\mathrm{Hom}}\nolimits _ R(\mathfrak a, N)} \mathfrak {a} \ar[r] \ar[d] & N \\ & & \bigoplus _{\mathfrak a} \bigoplus _{\psi \in \mathop{\mathrm{Hom}}\nolimits _ R(\mathfrak a, N)} R } \]
which induces the desired map $\mathbf{M}(M) \to \mathbf{M}(N)$. The middle east-south-east arrow maps the summand $\mathfrak a$ corresponding to $\varphi $ via $\text{id}_{\mathfrak a}$ to the summand $\mathfrak a$ corresponding to $\psi = \chi \circ \varphi $. Similarly for the lower east-south-east arrow. Details omitted.
$\square$
Comments (0)
There are also: