Remark 19.9.4. If $\mathcal{A}$ is a “big” abelian category, i.e., if $\mathcal{A}$ has a class of objects, then Lemma 19.9.2 does not work. In this case, given any set of objects $E \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ there exists an abelian full subcategory $\mathcal{A}' \subset \mathcal{A}$ such that $\mathop{\mathrm{Ob}}\nolimits (\mathcal{A}')$ is a set and $E \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}')$. Then one can apply Lemma 19.9.2 to $\mathcal{A}'$. One can use this to prove that results depending on a diagram chase hold in $\mathcal{A}$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)