Lemma 13.14.5. Assumptions and notation as in Situation 13.14.1. Let $X$ be an object of $\mathcal{D}$ and $n \in \mathbf{Z}$.
$RF$ is defined at $X$ if and only if it is defined at $X[n]$. In this case there is a canonical isomorphism $RF(X)[n]= RF(X[n])$ between values.
$LF$ is defined at $X$ if and only if it is defined at $X[n]$. In this case there is a canonical isomorphism $LF(X)[n] \to LF(X[n])$ between values.
Comments (1)
Comment #2113 by Matthew Emerton on
There are also: